3.531 \(\int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=171 \[ -\frac{(43 A-3 B-5 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{2 A \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{a^{5/2} d}-\frac{(11 A-3 B-5 C) \tan (c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac{(A-B+C) \tan (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}} \]

[Out]

(2*A*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(5/2)*d) - ((43*A - 3*B - 5*C)*ArcTan[(Sqrt[a
]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - ((A - B + C)*Tan[c + d*x])/(4*d*
(a + a*Sec[c + d*x])^(5/2)) - ((11*A - 3*B - 5*C)*Tan[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.277868, antiderivative size = 171, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {4052, 3922, 3920, 3774, 203, 3795} \[ -\frac{(43 A-3 B-5 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{2 A \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{a^{5/2} d}-\frac{(11 A-3 B-5 C) \tan (c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac{(A-B+C) \tan (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(2*A*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(5/2)*d) - ((43*A - 3*B - 5*C)*ArcTan[(Sqrt[a
]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - ((A - B + C)*Tan[c + d*x])/(4*d*
(a + a*Sec[c + d*x])^(5/2)) - ((11*A - 3*B - 5*C)*Tan[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2))

Rule 4052

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_))^(m_), x_Symbol] :> -Simp[((a*A - b*B + a*C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] +
Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*(2*m + 1) + (b*B*(m + 1) - a*(A*(m + 1) - C*
m))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 3922

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> -Simp[((b
*c - a*d)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(b*f*(2*m + 1)), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e
+ f*x])^(m + 1)*Simp[a*c*(2*m + 1) - (b*c - a*d)*(m + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f},
 x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rule 3920

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rubi steps

\begin{align*} \int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx &=-\frac{(A-B+C) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{\int \frac{-4 a A+\frac{1}{2} a (3 A-3 B-5 C) \sec (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac{(A-B+C) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{(11 A-3 B-5 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{\int \frac{8 a^2 A-\frac{1}{4} a^2 (11 A-3 B-5 C) \sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{8 a^4}\\ &=-\frac{(A-B+C) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{(11 A-3 B-5 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{A \int \sqrt{a+a \sec (c+d x)} \, dx}{a^3}-\frac{(43 A-3 B-5 C) \int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac{(A-B+C) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{(11 A-3 B-5 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac{(2 A) \operatorname{Subst}\left (\int \frac{1}{a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a^2 d}+\frac{(43 A-3 B-5 C) \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=\frac{2 A \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a^{5/2} d}-\frac{(43 A-3 B-5 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{(A-B+C) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{(11 A-3 B-5 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}\\ \end{align*}

Mathematica [C]  time = 28.2715, size = 16181, normalized size = 94.63 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [B]  time = 0.244, size = 1097, normalized size = 6.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x)

[Out]

-1/32/d/a^3*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(32*A*sin(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(
1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*cos(d*x+c)^2*2^(1/2)+64*A*sin(d*x+c)*(
-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*
x+c))*2^(1/2)*cos(d*x+c)+43*A*cos(d*x+c)^2*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+co
s(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-3*B*cos(d*x+c)^2*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/
(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-5*C*cos(d*x+c)
^2*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(
cos(d*x+c)+1))^(1/2)+32*A*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*2^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos
(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)+86*A*cos(d*x+c)*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c
)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-6*B*cos(d*x+c)*sin(d*x+c
)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1
))^(1/2)-10*C*cos(d*x+c)*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*
x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+43*A*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+
c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-30*A*cos(d*x+c)^3-3*B*ln(-(-(-2*cos(d*x+c)/(
cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+14*B
*cos(d*x+c)^3-5*C*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+
c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+2*C*cos(d*x+c)^3+8*A*cos(d*x+c)^2-8*B*cos(d*x+c)^2+8*C*cos(d*x+c)^2+22*A*c
os(d*x+c)-6*B*cos(d*x+c)-10*C*cos(d*x+c))/(cos(d*x+c)+1)^2/sin(d*x+c)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 96.8348, size = 1845, normalized size = 10.79 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/64*(sqrt(2)*((43*A - 3*B - 5*C)*cos(d*x + c)^3 + 3*(43*A - 3*B - 5*C)*cos(d*x + c)^2 + 3*(43*A - 3*B - 5*C)
*cos(d*x + c) + 43*A - 3*B - 5*C)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos
(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 6
4*(A*cos(d*x + c)^3 + 3*A*cos(d*x + c)^2 + 3*A*cos(d*x + c) + A)*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2*sqrt(-a)
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) -
 4*((15*A - 7*B - C)*cos(d*x + c)^2 + (11*A - 3*B - 5*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))
*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), 1/32*(sqrt(2)*(
(43*A - 3*B - 5*C)*cos(d*x + c)^3 + 3*(43*A - 3*B - 5*C)*cos(d*x + c)^2 + 3*(43*A - 3*B - 5*C)*cos(d*x + c) +
43*A - 3*B - 5*C)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x
 + c))) - 64*(A*cos(d*x + c)^3 + 3*A*cos(d*x + c)^2 + 3*A*cos(d*x + c) + A)*sqrt(a)*arctan(sqrt((a*cos(d*x + c
) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*((15*A - 7*B - C)*cos(d*x + c)^2 + (11*A - 3*B -
 5*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(
d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B \sec{\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sec{\left (c + d x \right )} + 1\right )\right )^{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)/(a*(sec(c + d*x) + 1))**(5/2), x)

________________________________________________________________________________________

Giac [B]  time = 11.2594, size = 490, normalized size = 2.87 \begin{align*} -\frac{2 \, \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}{\left (\frac{2 \, \sqrt{2}{\left (A a^{5} - B a^{5} + C a^{5}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}{a^{8} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} - \frac{\sqrt{2}{\left (13 \, A a^{5} - 5 \, B a^{5} - 3 \, C a^{5}\right )}}{a^{8} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \frac{\sqrt{2}{\left (43 \, A - 3 \, B - 5 \, C\right )} \log \left ({\left (\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{\sqrt{-a} a^{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} + \frac{64 \, A \log \left ({\left |{\left (\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} - a{\left (2 \, \sqrt{2} + 3\right )} \right |}\right )}{\sqrt{-a} a^{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} - \frac{64 \, A \log \left ({\left |{\left (\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} + a{\left (2 \, \sqrt{2} - 3\right )} \right |}\right )}{\sqrt{-a} a^{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}}{64 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-1/64*(2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*(2*sqrt(2)*(A*a^5 - B*a^5 + C*a^5)*tan(1/2*d*x + 1/2*c)^2/(a^8*sg
n(tan(1/2*d*x + 1/2*c)^2 - 1)) - sqrt(2)*(13*A*a^5 - 5*B*a^5 - 3*C*a^5)/(a^8*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))
*tan(1/2*d*x + 1/2*c) + sqrt(2)*(43*A - 3*B - 5*C)*log((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x +
1/2*c)^2 + a))^2)/(sqrt(-a)*a^2*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)) + 64*A*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c)
 - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3)))/(sqrt(-a)*a^2*sgn(tan(1/2*d*x + 1/2*c)^2 - 1))
 - 64*A*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3)))/
(sqrt(-a)*a^2*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d